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Aromatics with 6 to 9 carbon atoms can be converted
catalytically with hydrogen on bifunctional zeolites, such as
Pd/H-ZSM-5, into a high-quality steamcracker feed, thereby
opening a direct route for the utilisation of surplus pyrolysis
gasoline.

In view of the predicted over-supply of aromatics,1 novel
catalytic routes for their conversion into valuable products are
urgently needed. One of the major sources of aromatics is so-
called pyrolysis gasoline, a by-product of steamcracking in
which ethylene and propylene are made from light hydro-
carbons, such as straight-run naphtha,2 LPG3 or ethane. In a
preceding communication4 we have shown that cycloalkanes
(which are readily obtained from aromatics by catalytic ring
hydrogenation) can be converted on acidic zeolite catalysts,
such as H-ZSM-5, into a high-quality steamcracker feed
consisting mainly of ethane, propane and n-butane. Here, we
demonstrate that, as an alternative to this two-stage route (ring
hydrogenation followed by ring opening), aromatics can be
directly converted with hydrogen into the same type of synthetic
steamcracker feed, if bifunctional zeolite catalysts, e.g., Pd/H-
ZSM-5, are used. The literature on catalytic ring opening of
aromatics in an excess of hydrogen is very scarce,5–8 and on the
catalysts used so far, the yields of n-alkanes with two or more
carbon atoms, i.e. the most desirable hydrocarbons for a
synthetic steamcracker feed, are reported to be low.

Results of the conversion of toluene9 on 0.2Pd/H-ZSM-510

are displayed in Fig. 1. Whereas the conversion of toluene is
100% throughout the temperature range covered, the types of
reaction occurring vary drastically: at 200 °C, hydrogenation to
methylcyclohexane is the predominant reaction, and part of the
methylcyclohexane is isomerised in consecutive reactions via
the well known11 bifunctional mechanism into ethylcyclo-
pentane and dimethylcyclopentanes. With increasing tem-
perature, more and more ring opening occurs. At 320 °C,
virtually all cyclic hydrocarbons are converted into alkanes,12

and increasing the temperature further brings about a diminu-
tion of the yield of isoalkanes which undergo secondary
cracking reactions into propane and ethane. At 400 °C toluene

is converted with a yield of 72.8% into C2+-n-alkanes (cf. Table
1, column 4). It is noteworthy that no aromatics occur in the
product under any reaction conditions, and very little methane is
formed even at 400 °C. For various reasons (high hydrogen
consumption and exothermicity, methane does not form
ethylene or propylene in the steamcracker), methane is a very
undesired product.

Upon increasing the palladium content of the catalyst from
0.2 to 0.5 and 1.0 wt.%, the yields at a reaction temperature of
400 °C do not change significantly. From this we conclude that,
under the conditions applied in this work, ring opening and the
formation of light alkanes proceed via the bifunctional hydro-
cracking mechanism13 and Haag–Dessau cracking,14 rather
than via hydrogenolysis15 on the noble metal.

Table 1 shows results obtained at 400 °C with different feed
hydrocarbons. No products other than alkanes were found with
any feed hydrocarbon under these conditions. The yields of
methane are low throughout (around 3–4%, Table 1, entry 2).
Interestingly, the yields of the desired C2+-n-alkanes (Table 1,
entry 7) do vary significantly with the nature of the aromatic

Table 1 Conversion of aromatics on 0.2Pd/H-ZSM-5 at 400 °C

Feed

Entry Benzene Toluene o-Xylene p-Xylene Ethylbenzene
1,2,4-Trimethyl-
benzene

1 Xa (%) 100 100 100 100 100 100
2 Ymethane

b (%) 3.7 3.3 4.0 4.1 2.5 3.0
3 Yethane

b (%) 14.4 7.9 15.6 14.9 30.6 13.6
4 Ypropane

b (%) 62.8 48.6 49.1 46.7 49.0 49.4
5 Yn-butane

b (%) 11.9 15.9 14.2 15.0 9.5 15.2
6 YC5+-n-alkanes

b (%) 1.2 0.4 3.4 3.8 1.1 2.7
7 YC2+-n-alkanes

b,c (%) 90.3 72.8 82.3 80.4 90.2 80.9
8 Yisoalkanes

b (%) 6.0 23.9 13.7 15.5 7.3 16.1
a X is the conversion of the aromatic feed hydrocarbon. b Y is the yield of the product indicated and defined in the usual manner, e.g., Yn-butane = (4/7) 3
(ṅn-butane, out/ṅtoluene, in), ṅ being the molar flux. c Sum of entries 3 to 6.

Fig. 1 Conversion of toluene on 0.2Pd/H-ZSM-5 at various temperatures (X:
conversion; Y: yield; M-CHx: methylcyclohexane; E-CPn: ethylcyclo-
pentane; DM-CPns: dimethylcyclopentanes).
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feed hydrocarbon. This yield is lowest for toluene and above
90% for both benzene and ethylbenzene. Note also that very
large amounts of propane are formed from benzene (which can
be rationalized in terms of a so-called type C b-scission16,17 of
hexyl cations), while an unusually high yield of ethane is
observed in the product from ethylbenzene (which we tenta-
tively ascribe to a deethylation reaction).

Regardless of the hydrocarbon used as feed, there was no
significant change in the product yields with time-on-stream. In
Fig. 2, results are shown which were obtained with toluene as
feed on 0.2Pd/H-ZSM-5. During the initial 10 h, the yield of
C2+-n-alkanes amounted to ca. 73%. For the next 50 h (not
shown in Fig. 2) toluene was converted on this catalyst sample
at lower temperatures in the range 200–350 °C. Thereafter, the
reaction temperature was again raised to 400 °C for 10 h.
Significantly better yields of the desired C2+-n-alkanes (ca.
80%) were attained than with the fresh catalyst. We interpret
this selectivity gain in terms of a so-called coke selectivation,
i.e. at the lower reaction temperatures between the two runs at
400 °C, some dimerization and/or disproportionation reactions
of methylcyclohexane18 or toluene inside the zeolite pores must
have taken place, whereby larger product molecules were
formed which ultimately led to some carbonaceous deposits
with a concomitant narrowing of the pores. Similar effects have
been observed by others, e.g. in the disproportionation of
toluene on H-ZSM-5.19

In conclusion, we have demonstrated that aromatics can be
directly converted with hydrogen into a high-quality steam-
cracker feed on bifunctional zeolite catalysts of the Pd/H-ZSM-
5 type. This direct route will have to compete with the two-stage
variant consisting of ring hydrogenation in the aromatics over a
hydrogenation catalyst followed by ring opening of cycloalk-
anes on monofunctional zeolites.4 The main technological
advantage of the direct route described here is a single catalytic
reactor for the manufacture of synthetic steamcracker feed from
pyrolysis gasoline. On the other hand, advantageous features of
the two-stage variant are (i) the possibility to optimise the ring
hydrogenation of aromatics and the ring opening of the resulting
cycloalkanes separately and (ii) the generation of the exo-

thermic heat in two separate reactors and, hence easier removal
of this heat. It remains to be seen whether the direct route or the
two-stage variant is economically more attractive.
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